Polarized Lambda-Calculus at Runtime, Dependent Types at Compile Time

András Kovács

University of Gothenburg

11 June 2024, TYPES 2024, Copenhagen

GHC's input:

- f :: Reader Bool Int
- f = do
 - b ← ask
 - if b then return 10 else return 20

GHC's -00 output:

dictl :: Monad (Reader Int)
dictl = MkMonad ...

dict2 :: MonadReader (Reader Int)
dict2 = MkMonadReader ...

```
f :: Reader Bool Int
f = (>>=) dict1 (ask dict2) (\b →
    case b of
    True → return dict1 10
    False → return dict1 20)
```

GHC's -01 output:

f :: Bool \rightarrow Int f b = case b of True \rightarrow 10 False \rightarrow 20

- Elaboration to -00 is deterministic and relatively cheap.
- Going from -00 to -01 is hard and needs a lot of machinery.

Example: mapM is third-order, rank-2 polymorphic, but almost all usages should compile to first-order monomorphic code.

mapM :: Monad m => $(a \rightarrow m b) \rightarrow [a] \rightarrow m [b]$

GHC has to guess the programmer's intent.

Doing it differently

Input in WIP language:

- f : Reader Bool Int
- f := do
 - b ← ask
 - if b then return 10 else return 20

- Looks similar to Haskell.
- Desugaring & elaboration does slightly more work.
- Compiles to efficient code *deterministically, without* general-purpose optimization.

Doing it differently

Input in WIP language:

- f : Reader Bool Int
- f := do
 - b ← ask
 - if b then return 10 else return 20

- Looks similar to Haskell.
- Desugaring & elaboration does slightly more work.
- Compiles to efficient code *deterministically, without* general-purpose optimization.

Main idea

- We use a two-level type theory (2LTT):
 - Metalanguage (compile time): dependently typed, fancy features.
 - Object language (runtime): simpler & lower-level.
 - The two are smoothly integrated.
- Monadic programs are *metaprograms* which generate efficient runtime code.
- Most optimizations are implemented in libraries instead of compiler internals.

- MetaTy: universe of meta-level types. Supports Π , Σ , inductive families.
- **Ty**: universe of object-level types. Only simple types. Polarized to *computation* & *value* types.

A meta-level program:

An object-level program:

```
id : {A : MetaTy} \rightarrow A \rightarrow A
id x = x
```

```
data List (A : ValTy) := Nil | Cons A List
myMap : List Int → List Int
myMap ns := case xs of
Nil → Nil
Cons n ns → Cons (n + 10) (myMap ns)
```

- Lifting: for A : Ty, we have *A : MetaTy, as the type of metaprograms that produce A-typed object programs.
- **Quoting**: for t : A and A : Ty, we have <t> as the metaprogram which immediately returns t.
- **Splicing**: for t : *A*, we have ~t : A which runs the metaprogram t and inserts its output in some object-level code.
- Definitional equalities: $\sim <t > \equiv t$ and $<\sim t > \equiv t$.

```
myMap : List Int \rightarrow List Int
myMap ns := \sim(map (\lambda x. <\simx + 10>) <ns>)
```

```
\begin{array}{rll} \mathsf{map} : \{\mathsf{A} \ \mathsf{B} \ : \ \mathsf{ValTy}\} \rightarrow (\mathsf{A} \rightarrow \mathsf{B}) \rightarrow \mathsf{List} \ \mathsf{A} \rightarrow \mathsf{List} \ \mathsf{B} \\ \mathsf{map} \ \mathsf{f} = \mathsf{letrec} \ \mathsf{go} \ \mathsf{as} \ := \mathsf{case} \ \mathsf{as} \ \mathsf{of} \\ & \mathsf{Nil} & \rightarrow \mathsf{Nil} \\ & \mathsf{Cons} \ \mathsf{a} \ \mathsf{as} \rightarrow \mathsf{Cons} \ (\mathsf{f} \ \mathsf{a}) \ (\mathsf{go} \ \mathsf{as}) \\ & \mathsf{in} \ \mathsf{go} \end{array}\mathsf{myMap} \ : \ \mathsf{List} \ \mathsf{Int} \rightarrow \mathsf{List} \ \mathsf{Int} \\ \mathsf{myMap} \ := \mathsf{map} \ (\lambda \ \mathsf{x}. \ \mathsf{x} + \mathsf{10}) \end{array}
```

A monad for code generation

Type classes (and monads) only exist in the metalanguage.

```
class Monad (m : MetaTy \rightarrow MetaTy) where
return : a \rightarrow m a
(>>=) : m a \rightarrow (a \rightarrow m b) \rightarrow m b
```

A monad for code generation

Type classes (and monads) only exist in the metalanguage.

```
class Monad (m : MetaTy \rightarrow MetaTy) where
return : a \rightarrow m a
(>>=) : m a \rightarrow (a \rightarrow m b) \rightarrow m b
```

Gen is a Monad whose effect is generating object code:

newtype Gen A = Gen {unGen : {R : Ty} \rightarrow (A \rightarrow \uparrow R) \rightarrow \uparrow R} instance Monad Gen where ...

```
runGen : Gen (\uparrow A) \rightarrow \uparrow A
runGen (Gen f) = f id
```

A monad for code generation

Type classes (and monads) only exist in the metalanguage.

```
class Monad (m : MetaTy \rightarrow MetaTy) where
return : a \rightarrow m a
(>>=) : m a \rightarrow (a \rightarrow m b) \rightarrow m b
```

Gen is a Monad whose effect is generating object code:

newtype Gen A = Gen {unGen : {R : Ty} \rightarrow (A \rightarrow \uparrow R) \rightarrow \uparrow R} instance Monad Gen where ...

```
runGen : Gen (\uparrow A) \rightarrow \uparrow A
runGen (Gen f) = f id
```

Generating an object-level let-definition:

gen : {A : Ty} $\rightarrow \ \ A \rightarrow Gen \ \ A$ gen {A} a = Gen \$ λ k. <let x : A := ~a in ~(k <x>)>

Staged input:

Output:

```
myAction : \uparrowInt \rightarrow Gen \uparrowIntfoo : IntmyAction x = dofoo := let y := 10 + 10 iny \leftarrow gen < x + \sim x >let z := y * y inz \leftarrow gen < y * \sim y >y * zreturn < y * \sim z >
```

foo : Int
foo := ~(runGen \$ myAction <10>)

Staging monads

We only program in meta-level monads, but also have back-and-forth translations between object-level types and metamonads.

```
down : ReaderT (nR) Gen (nA) \rightarrow n (ReaderT<sub>0</sub> R Identity<sub>0</sub> A)
up : n (ReaderT<sub>0</sub> R Identity<sub>0</sub> A) \rightarrow ReaderT (nR) Gen (nA)
```

```
f : ReaderT₀ Bool Identity₀ Int
f := ~(down $ do
    b ← ask
    b' ← split b
    case b' of
    MetaTrue → return <10>
    MetaFalse → return <20>)
```

In general: up/down is defined by recursion on a transformer stack. Identity₀ is related to Gen.

```
split : MonadGen m => rBool → m MetaBool
split b = liftGen $ Gen $ λ k. <case ~b of
True → ~(k MetaTrue)
False → ~(k MetaFalse)>
```

```
f : ReaderT₀ Bool Identity₀ Int
f := ~(down $ do
    b ← ask
    b' ← split b
    case b' of
    MetaTrue → return <10>
    MetaFalse → return <20>)
```

Computation and value types are tracked in the object language.

```
\_\rightarrow\_ : ValTy \rightarrow Ty \rightarrow CompTy
Closure : CompTy \rightarrow ValTy
List : ValTy \rightarrow ValTy
```

Closures only appear at runtime if we use Closure!

We have to use Closure (A \rightarrow B) to store functions in ADTs or pass them as function arguments.

(It's rare that closures are *really needed* in programming!)

How to compile this?

And this?

```
f : Int → Int
f x :=
    let g y := x + y;
    g x + 10
```

- Conditionally accepted at ICFP 24: *Closure-Free Functional Programming in a Two-Level Type Theory*.
- More things in paper: join points, stream fusion, semantics, more about polarized types.
- Implementations:
 - In Agda and typed Template Haskell with some limitations.
 - Standalone implementation early WIP.

Thank you!