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Compiling monads today in Haskell

GHC’s input:

f :: Reader Bool Int
f = do

b ← ask
if b then return 10

else return 20

GHC’s -O0 output:

dict1 :: Monad (Reader Int)
dict1 = MkMonad ...

dict2 :: MonadReader (Reader Int)
dict2 = MkMonadReader ...

f :: Reader Bool Int
f = (>>=) dict1 (ask dict2) (\b →
case b of

True → return dict1 10
False → return dict1 20)



Compiling monads today in Haskell

GHC’s -O1 output:

f :: Bool → Int
f b = case b of
True → 10
False → 20

• Elaboration to -O0 is deterministic and relatively
cheap.

• Going from -O0 to -O1 is hard and needs a lot of
machinery.

Example: mapM is third-order, rank-2 polymorphic, but almost all usages should compile to
first-order monomorphic code.

mapM :: Monad m => (a → m b) → [a] → m [b]

GHC has to guess the programmer’s intent.



Doing it differently
Input in WIP language:

f : Reader Bool Int
f := do
b ← ask
if b then return 10

else return 20

• Looks similar to Haskell.
• Desugaring & elaboration does slightly more work.
• Compiles to efficient code deterministically, without

general-purpose optimization.

Main idea
• We use a two-level type theory (2LTT):

• Metalanguage (compile time): dependently typed, fancy features.
• Object language (runtime): simpler & lower-level.
• The two are smoothly integrated.

• Monadic programs are metaprograms which generate efficient runtime code.
• Most optimizations are implemented in libraries instead of compiler internals.
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The 2LTT

• MetaTy: universe of meta-level types. Supports Π, Σ, inductive families.
• Ty: universe of object-level types. Only simple types. Polarized to computation & value

types.

A meta-level program:

id : {A : MetaTy} → A → A
id x = x

An object-level program:

data List (A : ValTy) := Nil | Cons A List

myMap : List Int → List Int
myMap ns := case xs of

Nil → Nil
Cons n ns → Cons (n + 10) (myMap ns)



The 2LTT - interaction between stages

• Lifting: for A : Ty, we have ⇑A : MetaTy, as the type of metaprograms that produce
A-typed object programs.

• Quoting: for t : A and A : Ty, we have <t> as the metaprogram which immediately
returns t.

• Splicing: for t : ⇑A, we have ~t : A which runs the metaprogram t and inserts its
output in some object-level code.

• Definitional equalities: ~<t> ≡ t and <~t> ≡ t.



Staged example

map : {A B : ValTy} → (⇑A → ⇑B) → ⇑(List A) → ⇑(List B)
map f as = <letrec go as := case as of

Nil → Nil
Cons a as → Cons ~(f <a>) (go as)

in go ~as>

myMap : List Int → List Int
myMap ns := ~(map (λ x. <~x + 10>) <ns>)



Staged example - with stage inference

map : {A B : ValTy} → (A → B) → List A → List B
map f = letrec go as := case as of

Nil → Nil
Cons a as → Cons (f a) (go as)

in go

myMap : List Int → List Int
myMap := map (λ x. x + 10)



A monad for code generation
Type classes (and monads) only exist in the metalanguage.

class Monad (m : MetaTy → MetaTy) where
return : a → m a
(>>=) : m a → (a → m b) → m b

Gen is a Monad whose effect is generating object code:

newtype Gen A = Gen {unGen : {R : Ty} → (A → ⇑R) → ⇑R}
instance Monad Gen where ...

runGen : Gen (⇑A) → ⇑A
runGen (Gen f) = f id

Generating an object-level let-definition:

gen : {A : Ty} → ⇑A → Gen ⇑A
gen {A} a = Gen $ λ k. <let x : A := ~a in ~(k <x>)>
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A monad for code generation

Staged input:

myAction : ⇑Int → Gen ⇑Int
myAction x = do
y ← gen <~x + ~x>
z ← gen <~y * ~y>
return <~y * ~z>

foo : Int
foo := ~(runGen $ myAction <10>)

Output:

foo : Int
foo := let y := 10 + 10 in

let z := y * y in
y * z



Staging monads
We only program in meta-level monads, but also have back-and-forth translations between
object-level types and metamonads.

down : ReaderT (⇑R) Gen (⇑A) → ⇑(ReaderTₒ R Identityₒ A)
up : ⇑(ReaderTₒ R Identityₒ A) → ReaderT (⇑R) Gen (⇑A)

f : ReaderTₒ Bool Identityₒ Int
f := ~(down $ do
b ← ask
b' ← split b
case b' of
MetaTrue → return <10>
MetaFalse → return <20>)

In general: up/down is defined by recursion on a transformer stack. Identityₒ is related to
Gen.



Case splitting on object values

split : MonadGen m => ⇑Bool → m MetaBool
split b = liftGen $ Gen $ λ k. <case ~b of
True → ~(k MetaTrue)
False → ~(k MetaFalse)>

f : ReaderTₒ Bool Identityₒ Int
f := ~(down $ do
b ← ask
b' ← split b
case b' of
MetaTrue → return <10>
MetaFalse → return <20>)



Polarization & Closure-Freedom

Computation and value types are tracked in the object language.

_→_ : ValTy → Ty → CompTy
Closure : CompTy → ValTy
List : ValTy → ValTy
...

Closures only appear at runtime if we use Closure!

We have to use Closure (A → B) to store functions in ADTs or pass them as function
arguments.

(It’s rare that closures are really needed in programming!)



Polarization & Closure-Freedom

How to compile this?

f : Bool → Int → Int
f b = case b of True → λ x. x + 10

False → λ x. x * 10

And this?

f : Int → Int
f x :=
let g y := x + y;
g x + 10



More things

• Conditionally accepted at ICFP 24: Closure-Free Functional Programming in a Two-Level
Type Theory.

• More things in paper: join points, stream fusion, semantics, more about polarized types.
• Implementations:

• In Agda and typed Template Haskell with some limitations.
• Standalone implementation early WIP.

Thank you!


